
Ammar Hussein Java Programming Language

chapter1
1

Chapter1

What Java Is

The basics: Java is an object-oriented programming language developed by Sun
Microsystems that plays to the strengths of the Internet.

Object-oriented programming (OOP) is an unusual but powerful way to develop
software. In OOP, a computer program is considered to be a group of objects that
interact with each other. Consider an embezzlement program implemented with Java:
A Worker object skims some Money objects from the CompanyFunds object and puts
them in its own BankAccount object. If another Worker object uses the
DoubleCheckFunds object, a Police object will be called.

The feature that is best known about Java is that it can be used to create programs
that execute from World Wide Web pages. These programs are called applets.

Java is a general-purpose language that can be used to develop all kinds of programs.

A Java program is created as a text file with the file extension .java. It is compiled
into one or more files of bytecodes with the extension .class. Bytecodes are a set of
instructions similar to the machine code instructions created when a computer
program is compiled. The difference is that machine code must run on the computer
system it was compiled for; bytecodes can run on any computer system equipped to
handle Java programs.

Java has quickly become a popular choice for computer programming--both on and
off the Internet.

Java is just a small, simple, safe, object-oriented, interpreted or dynamically
optimized, byte-coded, architecture-neutral, garbage-collected, multithreaded
programming language with a strongly typed exception-handling mechanism for
writing distributed, dynamically extensible programs.

Java Is Object Oriented

Object-oriented programming (OOP) is a powerful way of organizing and developing
software. The short-form description of OOP is that it organizes a program as a set of
components called objects. These objects exist independently of each other, and they
have rules for communicating with other objects and for telling those objects to do
things. Think back to how Star7 devices were developed as a group of independent
devices with methods for communicating with each other. Object-oriented
programming is highly compatible with what the Green project was created to do and,
by extension, for Java as well.

Java inherits its object-oriented concepts from C++ and other languages such as
Smalltalk. The fact that a programming language is object oriented may not seem like

Ammar Hussein Java Programming Language

chapter1
2

a benefit to some. Object-oriented programming can be an intimidating subject to
tackle, even if you have some experience programming with other languages.
However, object-oriented programs are more adaptable for use in other projects,
easier to understand, and more bugproof.

The Java language includes a set of class libraries that provide basic variable types,
system input and output capabilities, and other functions. It also includes classes to
support networking, Internet protocols, and graphical user interface functions.

There's a lot of excitement in the programming community because Java provides a
new opportunity to use object-oriented techniques on the job. Smalltalk, the language
that pioneered object-oriented programming in the 1970s, is well-respected but has
never been widely adopted as a software-development choice. As a result, getting the
go-ahead to develop a project using Smalltalk can be an uphill struggle. C++ is
object-oriented, but concerns about its use have already been described. Java is
overcoming the hurdle in terms of usage, especially in regard to Internet programming
and the development of distributed applications.

Java Is Safe

Another thing essential to Java's success is that it is safe.A Java program that executes
from a Web page is called an applet. All other Java programs are called applications.
When an applet is encountered on a Web page (if the user's browser can handle Java),
the browser downloads the applet along with the text and images on the page. The
applet then runs on the user's computer. This act should raise a red flag--danger!
danger!--because a lot of harmful things can occur when programs are executed:
viruses, Trojan horses, the Microsoft Network, and so on.

Java provides security on several different levels. First, the language was designed to
make it extremely difficult to execute damaging code. The elimination of pointers is a
big step in this regard. Pointers are a powerful feature, as the programmers of C-like
languages can attest, but pointers can be used to forge access to parts of a program
where access is not allowed, and to access areas in memory that are supposed to be
unalterable. By eliminating all pointers except for a limited form of references to
objects, Java is a much more secure language.

Another level of security is the bytecode verifier. As described earlier, Java programs
are compiled into a set of instructions called bytecodes. Before a Java program is run,
a verifier checks each bytecode to make sure that nothing suspicious is going on.

In addition to these measures, Java has several safeguards that apply to applets. To
prevent a program from committing random acts of violence against a user's disk
drives, an applet cannot, by default, open, read, or write files on the user's system.
Also, because Java applets can open new windows, these windows have a Java logo
and text that identifies them. This arrangement prevents one of these pop-up windows
from pretending to be something such as a user name and password dialog box.

Ammar Hussein Java Programming Language

chapter1
3

Java Is Platform Independent

Most computer software is developed for a specific operating system. If you wanted
to run software on Windows and Mac systems, it had to develop two versions of
the software at a significant effort and expense. Platform independence is the
capability of the same program to work on different operating systems; Java is
completely platform independent.

Java's variable types have the same size across all Java development platforms--so an
integer is always the same size, no matter which system a Java program was written
and compiled on. Also, as shown by the use of applets on the Web, a Java .class file
of bytecode instructions can execute on any platform without alteration.

Java Is that Other Stuff, Too
One adjective that has been left out thus far is that Java is multithreaded. Threads
represent a way for a computer program to do more than one task at the same time.
Many operating systems are multitasking. Windows 95, for example, enables a person
to write a book chapter with Word in one window while using Netscape Navigator to
download every known picture of E! host Eleanor Mondale in the other. (Speaking
hypothetically, of course.)

Java provides the tools to write multithreaded programs and to make these programs
reliable in execution.

The Java Development Kit

The Java Development Kit (JDK) is a set of command-line tools that can be used to
create Java programs.

The Java Development Kit contains a variety of tools and Java development
information. Following is a list of the main components of the JDK:

 Runtime interpreter
 Compiler
 Applet viewer
 Debugger
 Class file disassembler
 Header and stub file generator
 Documentation generator
 Archiver
 Digital signer
 Remote Method Invocation tools
 Sample demos and source code
 API source code

The runtime interpreter is the core runtime module for the Java system. The compiler,
applet viewer, debugger, class file disassembler, header and stub file generator, and
documentation generator are the primary tools used by Java developers. The demos

Ammar Hussein Java Programming Language

chapter1
4

are interesting examples of Java applets, which all come with complete source code.
And finally, if you are interested in looking under the hood of Java, the complete
source code for the Java API (Application Programming Interface) classes is
provided.

The Runtime Interpreter

The Java runtime interpreter (java) is used to run standalone Java executable
programs in compiled, bytecode format. The runtime interpreter acts as a command-
line tool for running Java programs that are either nongraphical or that manage their
own window frame (applications); graphical programs requiring the display support
of a Web browser (applets) are executed entirely within a browser. The syntax for
using the runtime interpreter follows:

java Options ClassName Arguments

The ClassName argument specifies the name of the class you want to execute. If the
class resides in a package, you must fully qualify the name. You learn about classes
and packages in Chap- ter 5, "Classes, Packages, and Interfaces." For example, if you
want to run a class called Roids that is located in a package called ActionGames, you
execute it in the interpreter like this:

java ActionGames.Roids

When the Java interpreter executes a class, what it is really doing is executing the
main() method of the class. The interpreter exits when the main() method and any
threads created by it are finished executing.

The main() method accepts a list of arguments that can be used to control the
program. The Arguments argument to the interpreter specifies the arguments passed
into the main() method. For example, if you have a Java class called TextFilter that
performs some kind of filtering on a text file, you would likely pass the name of the
file as an argument, like this:

java TextFilter SomeFile.txt

The Options argument specifies options related to how the runtime interpreter
executes the Java program. Please refer to the JDK documentation for more
information about the options supported in the runtime interpreter.

The Compiler

The Java compiler (javac) is used to compile Java source code files into executable
Java bytecode classes. In Java, source code files have the extension .java. The Java
compiler takes files with this extension and generates executable class files with the
.class extension. The compiler creates one class file for each class defined in a
source file. This means that it is possible for a single Java source code file to compile

Ammar Hussein Java Programming Language

chapter1
5

into multiple executable class files. When this happens, it means that the source file
contains multiple class definitions.

The Java compiler is a command-line utility that works in a manner similar to the
Java runtime interpreter. The syntax for the Java compiler follows:

javac Options Filename

The Filename argument specifies the name of the source code file you want to
compile. The Options argument specifies options related to how the compiler creates
the executable Java classes. Please refer to the JDK documentation for more
information about the options supported by the compiler.

The Applet Viewer

The applet viewer is a tool that serves as a minimal test bed for final release Java
applets. You can use the applet viewer to test your programs instead of using a full-
blown Web browser. You invoke the applet viewer from a command line like this:

appletviewer Options URL

appletviewer example1.html

The URL argument specifies a document URL containing an HTML page with an
embedded Java applet. The Options argument specifies how to run the Java applet.
There is only one option supported by the applet viewer: -debug. The -debug option
starts the applet viewer in the Java debugger, which enables you to debug the applet.

The Debugger

The Java debugger (jdb) is a command-line utility that enables you to debug Java
applications. The Java debugger uses the Java Debugger API to provide debugging
support within the Java runtime interpreter. The syntax for using the Java debugger
follows:

jdb Options

The Options argument is used to specify different settings within a debugging session.

The Class File Disassembler

The Java class file disassembler (javap) is used to disassemble executable Java class
files. Its default output consists of the public data and methods for a class. The class
file disassembler is useful in cases where you don't have the source code for a class,
but you want to know a little more about how it is implemented. The syntax for the
disassembler follows:

javap Options ClassNames

Ammar Hussein Java Programming Language

chapter1
6

The ClassNames argument specifies the names of one or more classes to be
disassembled. The Options argument specifies how the classes are to be disassembled.
Refer to the JDK documentation for more information about the options supported in
the class file disassembler.

The Header and Stub File Generator

The Java header and stub file generator (javah) is used to generate C header and
source files for implementing Java methods in C. The files generated can be used to
access member variables of an object from C code. The header and stub file generator
accomplishes this by generating a C structure whose layout matches that of the
corresponding Java class. The syntax for using the header and stub file generator
follows:

javah Options ClassName

The ClassName argument is the name of the class from which to generate C source
files. The Options argument specifies how the source files are to be generated. Refer
to the JDK documentation for more information about the options supported in the
header and stub file generator.

The Documentation Generator

The Java documentation generator (javadoc) is a useful tool for generating API
documentation directly from Java source code. The documentation generator parses
through Java source files and generates HTML pages based on the declarations and
comments. The syntax for using the documentation generator follows:

javadoc Options FileName

The FileName argument specifies either a package or a Java source code file. In the
case of a package, the documentation generator creates documentation for all the
classes contained in the package. The Options argument enables you to change the
default behavior of javadoc.

Because the Java documentation generator is covered in detail in Chapter 29,
"Documenting Your Code," you'll have to settle for this brief introduction for now. Or
you could jump ahead to Chapter 29 to learn more now.

The Archiver

The Java archiver (jar) is a tool used to combine and compress multiple files (usually
applets or applications) into a single archive file, which is also commonly referred to
as a JAR file. Combining the components of an applet or application into a single
archive allows them to be downloaded by a browser in a single HTTP transaction
instead of requiring a new connection for each individual file. This approach, coupled
with the data compression provided by the archiver, dramatically improves download
times. Additionally, the archiver can be used with the digital signer (described in the
following section) to sign applets and applications so that they can be authenticated at
runtime. The syntax for using the archiver follows:

Ammar Hussein Java Programming Language

chapter1
7

jar Options ManifestFileName OuputFileName InputFileNames

The ManifestFileName argument specifies a manifest file used to describe the
contents of the archive being created. The OutputFileName argument specifies the
name of the archive to be created. The InputFileNames argument specifies the files to
be added to the archive. The Options argument enables you to change the default
behavior of jar. You learn all about manifest files, code signing, and the ins and outs
of the jar tool in Part VIII of this book, "Java Archives and JavaBeans."

The Digital Signer

The Java digital signer (javakey), also known as the Java security tool, is an
interesting tool that generates digital signatures for archive files. Signatures are used
to verify that a file came from a specified entity, or signer. To generate a signature for
a particular file, the signer must first be associated with a public/private key pair and
must also have one or more certificates authenticating the signer's public key. The
digital signer is responsible for managing this database of entities, along with their
keys and certificates. The syntax for using the digital signer follows:

javakey Options

The Options argument is used to control the operation of javakey. You learn all
about digital code signing, public and private keys, and the specifics of how to use the
javakey tool in Chapter 37, "Code Signing and JAR Security."

The Remote Method Invocation Tools

The JDK includes three different tools for working with and managing remote method
invocation (RMI). These tools consist of an RMI stub compiler, a remote object
registry tool, and a serial version tool.

The Java API

The Java Application Programming Interface (API) is a set of classes used to develop
Java programs. These classes are organized into groups called packages. There are
packages for the following tasks:

 Numeric variable and string manipulation
 Image creation and manipulation
 File input and output
 Networking
 Windowing and graphical user interface design
 Applet programming
 Error handling
 Security
 Database access

Ammar Hussein Java Programming Language

chapter1
8

 Distributed application communication
 JavaBeans components

The API includes enough functionality to create sophisticated applets and
applications. The Java API must be supported by all operating systems and Web
software equipped to execute Java programs, so you can count on the existence of
Java API class files when developing programs.

Example 1:-

Hello, World!

The best way to learn a programming language is to jump right in and see how a real
program works. In keeping with a traditional introductory programming example,
your first program is a Java version of the classic "Hello, World!" program. List- ing
3.1 contains the source code for the HelloWorld class, which also is located on the
CD-ROM that accompanies this book in the file HelloWorld.java.

The HelloWorld class.
class HelloWorld {

public static void main(String args[]) {
System.out.println("Hello, World!");

}

}

After compiling the program with the Java compiler (javac), you are ready to run it
in the Java interpreter. The Java compiler places the executable output in a file called
HelloWorld.class. This naming convention might seem strange considering the fact
that most programming languages use the .EXE file extension for executables. Not so
in Java! Following the object- oriented nature of Java, all Java programs are stored as
Java classes that are created and executed as objects in the Java runtime environment.
To run the HelloWorld program, type java HelloWorld at the command prompt. As
you may have guessed, the program responds by displaying Hello, World! on your
screen. Congratulations! You just wrote and tested your first Java program!

Obviously, HelloWorld is a very minimal Java program. Even so, there's still a lot
happening in those few lines of code. To fully understand what is happening, let's
examine the program line by line. First, you must understand that Java relies heavily
on classes. In fact, the first statement of HelloWorld reminds you that HelloWorld is
a class, not just a program. Furthermore, by looking at the class statement in its
entirety, you can see that the name of the class is defined as HelloWorld. This name
is used by the Java compiler as the name of the executable output class. The Java
compiler creates an executable class file for each class defined in a Java source file. If
there is more than one class defined in a .java file, the Java compiler stores each
class in a separate .class file.

Ammar Hussein Java Programming Language

chapter1
9

The HelloWorld class contains one method, or member function. For now, you can
think of this function as a normal procedural function that happens to be linked to the
class. The details of methods are covered in Chapter 5, "Classes, Packages, and
Interfaces." The single method in the HelloWorld class is called main() and should
be familiar if you have used C or C++. The main() method is where execution begins
when the class is executed in the Java interpreter. The main() method is defined as
being public static with a void return type. public means that the method can be
called from anywhere inside or outside the class. static means that the method is the
same for all instances of the class. The void return type means that main() does not
return a value.

The main() method is defined as taking a single parameter, String args[]. args is
an array of String objects that represent command-line arguments passed to the class
at execution. Because HelloWorld doesn't use any command-line arguments, you can
ignore the args parameter. You learn a little more about strings later in this chapter.

The main() method is called when the HelloWorld class is executed. main() consists
of a single statement that prints the message Hello, World! to the standard output
stream, as follows:

System.out.println("Hello, World!");

This statement may look a little confusing at first because of the nested objects. To
help make things clearer, examine the statement from right to left. First, notice that
the statement ends in a semicolon, which is standard Java syntax borrowed from
C/C++. Moving to the left, you see that the "Hello, World!" string is in
parentheses, which means that it is a parameter to a function call. The method being
called is actually the println() method of the out object. The println() method is
similar to the printf() method in C, except that it automatically appends a newline
character (\n) at the end of the string. The out object is a member variable of the
System object that represents the standard output stream. Finally, the System object is
a global object in the Java environment that encapsulates system functionality.

That pretty well covers the HelloWorld class--your first Java program. If you got a
little lost in the explanation of the HelloWorld class, don't be too concerned.
HelloWorld was presented with no previous explanation of the Java language and
was only meant to get your feet wet with Java code. The rest of this chapter focuses
on a more structured discussion of the fundamentals of the Java language.

